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ABSTRACT

There are several possibilities to introduce skewness into a symmetric distribution. One of

these procedures applies two different parameters of scale – with possibly different weights –

to the positive and the negative part of a symmetric density. Within this work we show that

this technique incorporates a well-defined parameter of skewness, i.e. that the generated

distributions are skewed to the right (left) if the parameter of skewness takes values less

(greater) than one. Secondly, we prove that the skewness parameter is compatible with

the skewness ordering of van Zwet (1964) which is the strongest ordering in the hierarchy

of orderings discussed by Oja (1981). Hence, the generated (skewed) distributions can be

ordered by the skewness parameter.

1. INTRODUCTION

Several techniques can be applied to symmetric distributions in order to generate asymmet-

ric ones. Tukey (1960), for example, exploits the technique of variable transformation and

suggests the so-called g-transformations. Similarly, Morgenthaler and Tukey (2000) advocate

kurtosis transformations with different transformation parameters on the positive and the

negative axis. Azzalini (1985, 1986), on the contrary, introduces skew densities by means of

g(x) = 2f(x)F (λx), where f and F denote the density and the distribution function, respec-

tively, of an arbitrary symmetric distribution and λ ∈ R governs the amount of skewness. A

further generalization in terms of weighting functions is given by Ferreira and Steel (2004).



The method we focus on can also be embedded in the framework of Ferreira and Steel (2004).

The main idea is to apply different scale parameters to the positive and the negative part

of a symmetric density. However, the new density distributes half of the probability mass

to the negative axis and half of the mass to the positive axis. This disadvantage can be

removed if the ”split of the scale parameter” is appropriately weighted, as it was done by

Fernández et al. (1995) and Theodossiou (1998). None of them, however, shows that the

corresponding parameter is actually a skewness parameter.

For that reason, the proceeding is as follows. Section 2 reviews the technique of splitting

the scale parameter. In section 3, we specify our notion of skewness and prove that the

transformed distributions are skewed to the right if the corresponding parameter takes values

less than one. Section 4 introduces the φ-function of a distribution and derives general

conditions – based on the φ−function – how two distributions can be ordered according to

the skewness ordering of van Zwet (1964). In section 5, the proof is given for the method of

splitting the scale parameter.

2. SPLITTING THE SCALE PARAMETER

Assume that X is a symmetric random variable with corresponding density f . A new density

can be defined by

fa(x; γ) ≡ a(γ) · 1

γ
· f(x/γ) · I(−∞,0](x) + (2− a(γ)) · γ · f(xγ) · I(0,∞)(x) (1)

with 0 ≤ a(γ) ≤ 2 for γ > 0 and a(1) = 1. Note that, in principle, two different parameters

of scale are introduced for the negative and the positive part of the distribution. For that

reason we call this method ”splitting the scale parameter”. For γ = 1, no transformation

takes place. In the following, we assume a(γ) to be either strictly increasing or constant

equal to one for γ > 0.

Example 1 1. For a ≡ 1 we obtain a ’simple’ split, given by

fa(x; γ) ≡ 1

γ
· f(x/γ) · I(−∞,0](x) + γ · f(xγ) · I(0,∞)(x).



Obviously, Fa(0; γ) =
∫ 0

−∞ fa(x; γ)dx = 1/2, independent of γ.

2. Choosing a(γ) = 2γ2

γ2+1
results in

fa(x; γ) =
2

γ + 1
γ

·
[
f(x/γ) · I(−∞,0](x) + f(xγ) · I[0,∞)(x)

]
. (2)

Densities of the form (2) were considered by Fernández et al. (1995) to generate skew

exponential power distributions. Grottke (2001) applied this transformation to the GT-

distribution, whereas Fischer and Vaughan (2002) applied it to the GSH distribution. Notice

that

a′(γ) =
4γ

1 + γ2
> 0, γ > 0.

We next show that the function a(.) is completely determined if the density fa(x; γ) should

be continuous at x = 0.

Lemma 1 Assume F to be a distribution function on R with continuous density. The den-

sity fa from (1) is continuous on R if and only if a(γ) = 2γ2/(1 + γ2).

Proof: The result follows immediately from

lim
x→0−

fa(x; γ) =
a(γ)

γ
f(0) = (2− a(γ))γf(0) = lim

x→0+
fa(x; γ) ¤

For that reason, we focus on the two cases of example 1, above. The corresponding distri-

bution function of fa from equation (1) is given by

Fa(x; γ) = a(γ) · F (x/γ) · I(−∞,0](x) +
[
a(γ)− 1 + (2− a(γ)) · F (xγ)

]
· I(0,∞)(x). (3)

Occasionally, we make use of the inverse distribution function which is

F−1
a (u; γ) = γ · F−1

(
u

a(γ)

)
· IA(u) +

1

γ
· F−1

(
1 + u− a(γ)

2− a(γ)

)
· IA(u) (4)

with A = (0, γ2

1+γ2 ) = (0, a(γ)
2

) and IA(u) = 1− IA(u).



3. SPLITTING THE SCALE PARAMETER AND SKEWNESS TO THE RIGHT

To the best of our knowledge, all authors using the method speak of the ”skewness parameter

γ” without having it defined. In the next definition we specify our notion of skewness to the

right in terms of the distribution function Fa from equation (3), above.

Definition 1 The distribution function Fa with median F−1
a (0.5) will be called skewed to the

right if

Fa(F
−1
a (0.5; γ) + c; γ) ≤ 1− Fa(F

−1
a (0.5; γ)− c; γ)

for all c ∈ R with ′′ < ′′ for at least one c ∈ R.

We next show that the distribution function Fa is skewed to the right, if γ < 1 and a(γ) ≡ 1.

In addition, the same result will be proved for a(γ) = 2γ2/(1+γ2) and a unimodal symmetric

density f with median at the x = 0. Note that there are several definitions of unimodality.

According to Hàjek and Šidak (1967, p. 15), a density f is unimodal, if − log f is increasing.

This definition cancels out, for instance, the Student t-distribution. For that reason, we call

a density f unimodal if the corresponding distribution function F is strictly convex for x < 0

and strictly concave for x > 0.

Theorem 1 1. Let a(γ) ≡ 1 and F denote a strictly increasing distribution function with

symmetric density f . Then Fa from equation (3) is skewed to the right if γ < 1.

2. Let a(γ) = 2γ2

1+γ2 and F be a continuous distribution function with unimodal symmetric

density. Then Fa is skewed to the right if γ < 1.

Proof: 1. The median of F is F−1(0.5) = 0 and

Fa(x; γ) = F (x/γ; γ)I(−∞,0](x) + F (xγ)I(0,∞)(x).

Let c > 0 be fixed. Then, Fa(F
−1(0.5) + c; γ) = F (cγ) and due to the symmetry of F

1− Fa(F
−1(0.5)− c; γ) = 1− Fa(−c) = 1− F (−c/γ) = F (c/γ).



For 0 < γ < 1, we have |cγ| < |c/γ|. Using the strict monotonicity of F ,

Fa(c; γ) = F (cγ) < F (c/γ) = 1− Fa(−c; γ) for c > 0.

For c < 0, Fa(−c; γ) < 1− Fa(c; γ) and Fa(c; γ) < 1− Fa(c; γ). The case c = 0 is trivial.

2. Let x0.5 = F−1
a (0.5; γ) denote the median of Fa.

Case 1: x0.5 + c ≥ 0 and x0.5 − c ≥ 0 for c > 0.

From the unimodality of f we conclude that fa has to be unimodal with modus x0.5.

Therefore, Fa is strictly concave for x > 0. This means that

λ · Fa(x1; γ) + (1− λ) · Fa(x2; γ) ≤ Fa(λx1 + (1− λ)x2); γ)

for x1, x2 > 0, 0 ≤ λ ≤ 1. Setting λ ≡ 1
2
, x1 ≡ x0.5 − c and x2 ≡ x0.5 + c we get

Fa(x0.5 − c; γ)

2
+

Fa(x0.5 + c; γ)

2
≤ Fa

(
x0.5 − c

2
+

x0.5 + c

2
; γ

)
= Fa (x0.5; γ) =

1

2
.

Multiplying with 2, Fa(x0.5 − c; γ) + Fa(x0.5 + c; γ) ≤ 1. If F is strictly concave this

inequality holds strictly for at least one c > 0.

Case 2: x0.5 − c ≤ 0 and x0.5 + c ≥ 0 for c > 0.

Define b(c) ≡ Fa(x0.5 − c; γ) + Fa(x0.5 + c; γ) for c > 0. Maximization of b(c) with

respect to c implies the necessary condition

b′(c) =
a(γ)

γ
· f

(
x0.5 − c

γ

)
+ (2− a(γ))γ · f((x0.5 + c)γ)

!
= 0, (5)

or, equivalently, f((x0.5 − c)/γ)
!
= f((x0.5 + c)γ). Due to the symmetry of f , this

condition can only be satisfied if the absolute values of the arguments are identical.

For a(γ) = 2γ2

1+γ2 this leads to the solution

c0 = c0(γ) = x0.5 · 1 + γ2

1− γ2
.



c0 is strictly positive if γ < 1. It can be verified that the second derivative of b at c0 is

strictly negative for γ < 1. Therefore, we have a maximum at c0 for γ < 1. It remains

to show that b(c0) ≤ 1. Plugging c0 into (5) we get

b(c0) = a(γ) · F ((x0.5 − c0)/γ) + a(γ)− 1 + (2− a(γ)) · F ((x0.5 + c0)γ)

= a(γ)F (−2x0.5γ/(1− γ2)) + a(γ)− 1 + (2− a(γ))F (2x0.5γ/(1− γ2)).

Using again the symmetry,

F (2x0.5γ/(1− γ2)) = 1− F (−2x0.5γ/(1− γ2)) ≤ 1.

Hence, b(c0) ≤ 2a(γ)− 1 + 2− 2a(γ) = 1.¤.

4. ψ- AND φ-FUNCTION OF A DISTRIBUTION

Let F denote the cumulative distribution function of a random variable X and assume that

F is continuous on R and has a density f which itself is differentiable on R \ {0}. The score

function of X is defined by

ψF (x) ≡



−f ′(x)

f(x)
for x 6= 0

0 for x = 0
.

It is anti-symmetric for every density which is symmetric (around 0), i.e.

ψF (x) = −ψF (−x), x ∈ R.

Example 2 (Gaussian and Student-t distribution) The score function of a zero-mean

and unit-scale Student-t distribution with k degrees of freedom is given by

ψt(x) =
2k + 1

k
· x

1 + x2/k
=

(k + 1) x

k + x2
, x ∈ R. (6)

It is not strictly monotone increasing on R because lim ψt(x) = 0 for x →∞ and k ∈ N fix.

Letting k →∞ in (6) we obtain the score function of a standard Gaussian variable,

ψΦ(x) = x, x ∈ R.



Example 3 (GT distribution) The generalized Student-t distribution of McDonald and

Newey (1988) with parameters p, q > 0 has density

fGT (x; p, q) =
p

2q1/pB(1/p, q)

(
1 +

|x|p
q

)−(q+1/p)

and reduces to the Student-t distribution with ν = 2q degrees of freedom for p = 2. Due to the

symmetry, we focus on the positive part of the distribution. The corresponding ψ-function is

given by

ψGT (x; p, q) =
(qp + 1) xp−1

q + xp
, x > 0.

Example 4 (GSH distribution) The generalized secant hyperbolic (GSH) distribution of

Vaughan (2002) generalizes both the logistic and the hyperbolic secant distribution. Its density

is given by

fGSH(x; t) = c1(t) · exp(c2(t)x)

exp(2c2(t)x) + 2a(t) exp(c2(t)x) + 1
, x ∈ R

with normalizing constants depending on the kurtosis parameter t through

a(t) = cos(t), c2(t) =
√

π2−t2

3
c1(t) = sin(t)

t
· c2(t), for − π < t ≤ 0,

a(t) = cosh(t), c2(t) =
√

π2+t2

3
c1(t) = sinh(t)

t
· c2(t), for t > 0

.

It can be verified that the score function is given by

ψGSH(x) =
c2(t) (exp(2 c2(t) x)− 1)

exp(2 c2(t) x) + 2 a(t) exp(c2(t) x) + 1
.
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Figure 1: ψ-functions for different distributions



In the next lemma we derive necessary and sufficient conditions for differentiable score func-

tions such that the ratio between score- and density function,

φF (x) ≡ ψF (x)

f(x)
, x ∈ R (7)

is strictly monotone increasing. This ratio will be called the φ-function in the sequel.

Lemma 2 Let F be a cumulative distribution function with density f which is assumed to

be twice differentiable on R. Then φF (x) is strictly monotone increasing if and only if

ψ′F (x) > −ψF (x)2 x ∈ R. (8)

Proof: Applying the quotient rule for x ∈ R,

φ′F (x) =
ψ′F (x)f(x)− ψF (x)f ′(x)

f(x)2
=

1

f(x)

(
ψ′F (x) + ψF (x)2

)
.

The term in brackets is positive if and only if ψ′F (x) > −ψF (x)2.¤

Note that if the score function ψF itself is strictly monotone increasing, condition (8) is

always satisfied. Hence, φF is strictly monotone increasing, too. This is true for the Gaussian

distribution and the GSH distribution. For the Student-t-distribution, however, the validity

of inequation (8) has to be shown.

Example 5 (Student-t distribution, continued) It is straightforward to verify that the

first derivative of the Student-t(k) score function is given by

ψ′t(k)(x) =
k + 1

k
· 1− x2/k

(1 + x2/k)2 x ∈ R.

Consequently,

ψ′t(k)(x) + ψt(k)(x)2 =
k(k + 1)(1 + x2)

(k + x2)2
> 0

for all x ∈ R and k ∈ N.



Example 6 (Laplace distribution) The density of the Laplace distribution is given by

fLAPLACE(x) =
1

2
exp(−|x|), x ∈ R

with corresponding score function ψLAPLACE(x) = sign(x), x ∈ R. The latter is discontin-

uous at x = 0. This point of discontinuity transmits to the φ-function

φLAPLACE(x) = 2sign(x)e|x|, x ∈ R.

However,

φ′LAPLACE(0) ≡ lim
x→0−

φ′LAPLACE(x) = lim
x→0+

φ′LAPLACE(x) = 2.

Therefore, with φLAPLACE(0) = 0,

φ′LAPLACE(x) = 2e|x| > −φLAPLACE(x)2 = −4e2|x| x ∈ R

and the φ−function of a Laplace distribution is strictly monotone increasing.

Example 7 (GT distribution, continued) For the GT distribution,

ψ′GT (x) + ψGT (x)2 =
(qp + 1) xp−2 (p− 1)

qp + 1 + xp
− (qp + 1) (xp−1)

2
p

(qp + 1 + xp)2 +
(qp + 1)2 (xp−1)

2

(q + xp)2 .

This expression becomes negative for p = 0.75, q = 10 and x = 0.2, for example. Conse-

quently, the φ-function of the GT distribution is not strictly monotone increasing on R.
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Figure 2: φ-functions for different distributions



By means of the φ-function we are able to verify whether two distributions can be ordered

according to the skewness ordering of van Zwet (1964): In the notion of Van Zwet (1964),

a continuous distribution F is less skewed to the right than a continuous distribution G

(briefly, F ¹c G), if

G−1(F (x)) is convex on R. (9)

If the densities f and g of F and G, respectively, exist and are differentiable, the second

derivative of G−1(F (x)) is positive if and only if

f(x)2

g(x)

(
f ′(x)

f(x)2
− g′(G−1(F (x))

g(G−1(F (x))2

)
> 0

for x ∈ R. In terms of the φ-function, the convexity of G−1(F (x)) requires that

(A1) φG(G−1(F (x)))− φF (x) > 0 for x ∈ R.

Setting u ≡ F−1(x), condition (A1) can be rewritten as

(A2) φG(G−1(u))− φF (F−1(u)) > 0 for u ∈ (0, 1).

Note that this condition can only be verified for parametric functions φF and φG, respectively.

5. SPLITTING THE SCALE PARAMETER AND SKEWNESS ORDERING

We have already shown in section 3 that, under certain conditions, Fa from equation (3)

defines a family of skew distributions. With the help of section 4, we are now able to prove

that this family of skew distributions can be ordered by means of the skewness parameter

γ if the partial ordering of van Zwet (1964) is considered. According to (9), this ordering

concerns

Λ(x; γ1, γ2) ≡ F−1
a (Fa(x; γ1); γ2) for x ∈ R

which has to be either convex or concave on R for γ2 < γ1. Notice that

Λ(x; γ1, γ2) =





γ2F
−1

(
F (x/γ1)a(γ1)

a(γ2)

)
for x ≤ γ1F

−1
(

a(γ2)
2γ1)

)
,

1
γ2

F−1
(

1+a(γ1)F (x/γ1)−a(γ2)
2−a(γ2)

)
for γ1F

−1
(

a(γ2)
2γ1)

)
< x < 0,

1
γ2

F−1
(

a(γ1)+(2−a(γ1))·F (xγ1)−a(γ2)
2−a(γ2)

)
for x ≥ 0.

(10)



In theorem 2 we show that 1/γ from (1) is a skewness parameter in the sense of van Zwet’s or-

dering if either the φ-function of F is strictly monotone increasing and a′(γ) > 0 or a(γ) ≡ 1.

In this case the ψ- and the φ-function of F are only defined for x 6= 0 because f is continuous

at x = 0 only for a(γ) = 2γ2/(1 + γ2), but not differentiable at x = 0 in all cases. This

requires a special treatment at x = 0.

Let ψa and ψ denote the score functions and, φa and φ the φ-functions of Fa and F , respec-

tively. Obviously,

ψa(x; γ) =
ψ(x/γ)

γ
· I(−∞,0)(x) + ψ(xγ) · γ · I(0,∞)(x)

and

φa(x; γ) =
φ(x/γ)

a(γ)
· I(−∞,0)(x) +

φ(xγ)

2− a(γ)
· I(0,∞)(x).

According to (A2), a sufficient condition for

F−1
a (Fa(x; γ1); γ2), γ2 < γ1

to be convex both on {x < 0} and {x > 0} is that φa(u; γ) is a strictly decreasing function

of γ both on {0 < u < a(γ1)/2} and on {a(γ1)/2 < u < 1}. For a fixed u ∈ (0, 1) we have to

demonstrate that

∂φa(F
−1
a (u; γ); γ)

∂γ
=

∂φa(x; γ)

∂γ

∣∣∣
x=F−1

a (u;γ)

∂F−1
a (u; γ)

∂γ
< 0

for u < a(γ)/2 and u > a(γ/2). If a(γ) is strictly increasing with inverse function a−1 the

relation has to hold for γ < a−1(2u) and γ > a−1(2u), u ∈ (0, 1).

Theorem 2 1. Let a(γ) ≡ 1 and F strictly increasing. If γ2 < γ1,

F−1
a (Fa(x; γ1); γ2) is convex.

2. Let a(γ) = 2γ2

1+γ2 for γ > 0 and F be a continuous distribution function with density

function f which is continuous on R and differentiable for R \ {0} such that φ′(x) > 0 for

x 6= 0. If γ2 < γ1,

F−1
a (Fa(x; γ1); γ2) is convex.



Proof: 1. For a(γ) ≡ 1,

Fa(x; γ1) = F (x/γ1)I(−∞,0](x) + F (xγ1)I(0,∞)(x)

and

F−1
a (u; γ2) = γ2F

−1(u)I(0,1/2](u) + 1/γ2F
−1(u)I(1/2,1)(u).

It directly follows that

F−1
a (Fa(x; γ1); γ2) =





γ2F
−1(F (x/γ1)) = γ2

γ1
x for x ≤ 0

1/γ2F
−1(F (xγ1)) = γ1

γ2
x for x ≤ 0

.

This function is convex if γ2/γ1 < γ1/γ2. This holds for γ2 < γ1.

2. Case 1: x 6= 0. From φ′(x) > 0, we conclude that

∂φa(x; γ)

∂x
=

φ′(x/γ)

γa(γ)
· I(−∞,0)(x) +

φ′(xγ)γ

2− a(γ)
· I(0,∞)(x) > 0.

The partial derivative of φa(x; γ) with respect to γ is given by

∂φa(x; γ)

∂γ
=

(
− a′(γ)

a(γ)2
φ(x/γ)− 1

a(γ)
φ′(x/γ)

x

γ2

)
· I(−∞,0)(x)

+

(
a′(γ)

(2− a(γ))2
φ(xγ) +

1

2− a(γ)
φ′(xγ)γ

)
· I(0,∞)(x) > 0.

Moreover,

∂F−1
a (u; γ)

∂γ
=

[
F−1(u/a(γ)) + γ · 1

f(F−1(u/a(γ)))
· −ua′(γ)

a(γ)2

]
· I(0,1/2a(γ))(u)

+


−

F−1
(

1+u−a(γ)
2−a(γ)

)

γ2
− 1

γ
·

a′(γ)(1−u)
(2−a(γ))2

f
(
(F−1

(
1+u−a(γ)

2−a(γ)

))

 · I(1/2a(γ),1)(u).

For a′(γ) > 0, this derivative is negative because 1− u > 0 and −1/γ2 < 0. Thus,

∂φa(F
−1
a (u; γ); γ)

∂γ
=

∂φa(x; γ)

∂γ
|x=F−1

a (u;γ)

∂F−1
a (u; γ)

∂γ
< 0

for 0 < u < 1
2a(γ)

or 1
2a(γ)

< u < 1.



Case 2: Up to now, the proof of the global convexity is not complete because we do not

know whether F−1
a (Fa(x; γ1); γ2) is convex for R. For this purpose, using

Λ′(x; γ1, γ2) =
fa(x; γ1)

fa(F−1
a (Fa(x; γ1); γ2); γ2)

, (11)

we show that

lim
x→0−

Λ′(x; γ1, γ2) ≤ lim
x→0+

Λ′(x; γ1, γ2). (12)

If γ2 < γ1 and a′(γ) > 0, γ > 0 we get a(γ2) < a(γ1). With Fa(0; γ1) = a(γ1)/2 it is

F−1
a (a(γ1)/2; γ2) > 0. With this in mind and (11),

lim
x→0−

Λ′(x; γ1, γ2) =
a(γ1)/γ1f(0/γ1)

(2− a(γ2))γ2f(F−1
a (Fa(0; γ1) · γ2)

and

lim
x→0+

Λ′(x; γ1, γ2) =
(2− a(γ1))γ1f(0γ1)

(2− a(γ2))γ2f(F−1
a (Fa(0; γ1) · γ2)

.

Equation (12) is valid, if

a(γ1)

γ1

≤ (2− a(γ1))γ1 ⇐⇒ a(γ1) ≤ 2γ2
1

1 + γ2
1

.

This is true for a(γ) = 2γ2/(1 + γ2), γ > 0. ¤

The conclusion is that 1/γ is a skewness parameter not only by pragmatic reasons but by a

precise definition of skewness as a meaningful statistical concept.

6. SUMMARY

There are several possibilities to introduce skewness into a symmetric distribution. One of

these procedures applies two different parameters of scale to the positive and the negative

part of a symmetric density. We showed that this technique incorporates a well-defined

parameter of skewness. It is well-defined in the sense that the transformed distributions

are skewed to the right if the parameter of skewness takes values less than 1. Secondly we

showed that the parameter of skewness is compatible with the ordering of van Zwet (1964)

which is the strongest ordering in the hierarchy of orderings discussed by Oja (1981).
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