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Abstract

A generalization of the hyperbolic secant distribution which allows both for

skewness and for leptokurtosis was given by Morris (1982). Recently, Vaughan

(2002) proposed another flexible generalization of the hyperbolic secant distribution

which has a lot of nice properties but is not able to allow for skewness. For that

reason, we additionally introduce a skewness parameter by means of splitting the

scale parameter and show that most of the nice properties are preserved. Finally,

we compare both families with respect to their ability to model financial return

distributions.

Keywords: Skewed hyperbolic secant; NEF-GHS distribution; GSH distribution; skew-

ness; return data



1 Preface

The hyperbolic secant distribution, first by Baten (1934) and by Talacko (1956), seems

to be an appropriate candidate as a starting point for a model for financial return data:

Firstly, it exhibits more leptokurtosis than the normal and even more than the logistic

distribution. Secondly, the cumulative distribution function admits a closed form so that,

for example, risk neutral probabilities of option prices can be calculated quickly and

accurately. Thirdly, this distribution is self-conjugate, infinitely divisible with existing

moment-generating function and finite moments. Since 1956, two generalization have

been proposed, both of which incorperate most of these properties, and, in addition,

allow for a more flexible form in relation to skewness and leptokurtosis.

The first proposal was introduced by Morris (1982) in the context of natural exponential

families (NEF) with quadratic variance function (i.e. the variance is a quadratic function

of the mean). This class has six members, one of which is generated by the hyperbolic

secant distribution, the so-called NEF-GHS distribution. The NEF-GHS distribution

allows for skewness and arbitrarily high excess kurtosis. Morris showed that this class

is again reproductive, infinitely divisible with existing moment-generating function and

existing moments. However, the corresponding cumulative distribution function doesn’t

admit a closed form.

Recently, Vaughan (2002) proposed a family of symmetric distributions, which he called

the generalized secant hyperbolic (GSH) distribution, with kurtosis ranging from 1.8 to

infinity. This family includes both the hyperbolic secant and the logistic distribution and



closely approximates the Student t-distribution with corresponding kurtosis. In addition,

the moment-generating function and all moments exist, and the cumulative distribution

is given in closed form. Unfortunately, this family does not allow for skewness. For this

purpose, we introduce a skewness parameter by means of splitting the scale parameter

according to Fernandez, Osiewalski and Steel (1995). This transformation preserves the

closed form for the density, the cumulative distribution function, the inverse cumulative

distribution function and the moments. We show that this family, termed as skewed

generalized secant hyperbolic distribution, provides an excellent fit to the Nikkei225 data

set.

2 The hyperbolic secant distribution

A symmetric random variable X is said to follow a hyperbolic secant distribution (HS) if

its probability density function (with unit variance and 0 mean) is given by

fHS(x) =
1

2 cosh (πx/2)

or, equivalently, its cumulative distribution function is given by

FHS(x) =
1

2
+

1

π
arctan(sinh(πx/2)).

This distribution is more leptokurtic than the normal, even more leptokurtic than the

logistic distribution and has a kurtosis coefficient (measured by the fourth standardized

moment) of 5. Moreover, the hyperbolic secant is infinitely divisible (see, for example,

Feller (1971)) with existing moment-generating function MHS(u) = 1/ cos(u). Conse-

quently, it seems to be a suitable starting point as a distribution for leptokurtic data, in

particular financial return data. One possibility to allow for more ”leptokurtic flexibil-

ity”, is to consider the λ-th convolution of a hyperbolic secant distribution. The latter



was discussed, for example, by Harkness and Harkness (1968) or Jørgensen (1997), and is

commonly known as the generalized hyperbolic secant distribution (GHS). However, GHS

offers still no opportunity to take skewness into account.

3 The NEF-GHS distribution

The NEF-GHS distribution was originally introduced by Morris (1982) in the context of

natural exponential families (NEF) with specific quadratic variance functions. Densities

of natural exponential families are of the form

f(x;λ, θ) = exp{θx− ψ(λ, θ)} · ζ(x, λ). (3.1)

In the case of the NEF-GHS distribution, ψ(λ, θ) = −λ log(cos(θ)) and ζ(x, λ) equals

the probability density function of a generalized hyperbolic secant (GHS) distribution.

Hence, the probability density function of the NEF-GHS distribution is given by

f(x;λ, θ) =
2λ−2

π Γ(λ)
·
∣∣∣∣Γ(λ+ ix

2

)∣∣∣∣2︸ ︷︷ ︸
C(x)

· exp {θx+ λ log(cos(θ))} (3.2)

for λ > 0 and |θ| < π/2. Introducing a scale parameter δ > 0 and a location parameter

µ ∈ R, and setting β ≡ tan(θ) ∈ R, equation (3.2) changes to

f(x) = C

(
x− µ

δ

)
· exp

(
arctan(β) · x− µ

δ
+ λ log(cos(arctan(β)))

)
. (3.3)

It can be shown that the NEF-GHS distribution reduces to the GHS distribution for

θ = β = 0; to a skewed hyperbolic secant distribution for λ = 1; and to the hyperbolic

secant distribution for λ = 1 and θ = 0. Furthermore, it goes in limit to the normal

distribution (λ→∞). It was shown that a NEF-GHS variable X is infinitely divisible and



reproductive. Furthermore the moment-generating function of X exists for {u| cos(u) −

β sin(u) > 0} and is given by

M(u) = exp {−λ log(cos(u)− β sin(u))} . (3.4)

All moments exist. In particular, the range of S(X) and K(X) is unrestricted. From

(3.4), the first four moments m′
i = E(X i), i = 1, .., 4 are given by

m′
1 = E(X) = µ+ δλβ,

m′
2 = δ2 λ(β2 + 1 + λβ2),

m′
3 = δ3 λ(β3λ2 + 3λβ + 2β + 3λβ3 + 2β3) and

m′
4 = δ4 λ(2 + 3λ+ 6β4 + 8β2 + 11λβ4 + 6λ2β2 + 14λβ2 + λ3β4 + 6λ2β4).

Consequently, the corresponding central moments mi = E(X −m)i are

V(X) = m2 = λ(1 + β2),

m3 = 2δ3λβ(β2 + 1) and m4 = δ4[3λ(λ+ 2)(1 + β2)2 − 4λ(1 + β2)].

The skewness and kurtosis coefficients, measured by the third and fourth standardized

moments, respectively, are given by

S(X) =
m3√
(m2)3

=
2β√

λ(1 + β2)
and K(X)− 3 =

m4

(m2)2
− 3 =

2 + 6β2

λ(1 + β2)
.

4 The GSH distributions

Another generalization of the hyperbolic secant distribution, one that can model both

thin and fat tails, was introduced by Vaughan (2002). This so-called standard generalized



secant hyperbolic (GSH) family of distributions, with kurtosis parameter t ∈ (−π,∞), has

density

fGSH(x; t) = c1(t) ·
exp(c2(t)x)

exp(2c2(t)x) + 2a(t) exp(c2(t)x) + 1
, x ∈ R (4.5)

with

a(t) = cos(t), c2(t) =
√

π2−t2

3
c1(t) = sin(t)

t
· c2(t), for − π < t ≤ 0,

a(t) = cosh(t), c2(t) =
√

π2+t2

3
c1(t) = sinh(t)

t
· c2(t), for t > 0.

The density in (4.5) is chosen so that X has zero mean and unit variance. The GSH dis-

tribution includes the logistic distribution (t = 0) and the hyperbolic secant distribution

(t = −π/2) as special cases and the uniform distribution on (−
√

3,
√

3) as the limiting

case for t→∞. Vaughan derives the cumulative distribution function, depending on the

parameter t, as

FGSH(x; t) =


1 + 1

t
arccot

(
− exp(c2(t)x)+cos(t)

sin(t)

)
for t ∈ (−π, 0),

exp(πx/
√

3)

1+exp(πx/
√

3)
for t = 0,

1− 1
t
arccoth

(
exp(c2(t)x)+cosh(t)

sinh(t)

)
for t > 0.

and the inverse distribution function

F−1
GSH(u; t) =



1
c2(t)

ln
(

sin(tu)
sin(t(1−u))

)
for t ∈ (−π, 0),

√
3

π
ln
(

u
1−u

)
for t = 0,

1
c2(t)

ln
(

sinh(tu)
sinh(t(1−u))

)
for t > 0.

The moment-generating function also depends on t and is given by

MGSH(u; 0, 1, t) =



π
t
sin(ut/c2(t)) csc(uπ/c2(t)) for t ∈ (−π, 0),

√
3u csc(

√
3u) for t = 0,

π
t
sinh(ut/c2(t)) csc(uπ/c2(t)) for t > 0.

Further, the score function is given by

S(x) = −f
′(x)

f(x)
=

c2(t) (exp(2 c2(t)x)− 1)

exp(2 c2(t)x) + 2 a(t) exp(c2(t)x) + 1



5 Derivation of the half-moments of the GSH distri-

bution

In order to introduce a skew version of the GSH distribution, we have to calculate the

(positive) half moments E+(X2n+1) =
∫∞

0
x2n+1f(x)dx of the GSH distribution. The

following result seems to be complicated at first sight, but the series involved are rapidly

converging.

Proposition 5.1 (Half moments of the GSH distribution) Assume X follows a GSH

variable with density given in (4.5). Set c = c2(t), c = c1(t) and a = a(t). Then

E+(X2n+1)

c · (2n+ 1)!
=


−Γ(2n+2)

c2n+2

csc(t)
(2n+1)!

∞∑
k=1

(−1)k · sin(kt)
k2n+2 , −π < t ≤ 0

csch(t)
c2n+2

[
t2n+2

2(2n+2)!
+

n∑
m=0

f1(m) +
∞∑

j=1

f2(j)

]
, t > 0

with

f1(m) =
t2m

(2m)!

(
1− 22m−2n−1

)
ζ(2n+ 2− 2m),

f2(j) = (−1)jj−2n−2 exp(−jt).

Here ζ denotes the well known Riemann zeta function.

Proof: Except for a multiplicative constant, the problem is to find efficient formulae for

evaluating

∫ ∞

0

x2n+1 exp(cx)

exp(2cx) + 2a exp(cx) + 1
dx

where n ∈ N ∪ {0}, c is a positive constant, and a = cos(t) when −π < t ≤ 0 and

a = cosh(t) when t > 0. By using symmetry, the even moments can be computed from

the original formulae outlined in Vaughan (2002).



Case 1: Assume −π < t ≤ 0 and a = cos(t). Then

∞∫
0

x2n+1 exp(cx)dx

exp(2cx) + 2 cos(t) exp(cx) + 1
=

1

c2n+2

∞∫
1

(ln(v))2n+1

v2 + 2v cos(t) + 1
dv

= − 1

c2n+2

1∫
0

(ln(v))2n+1

v2 + 2v cos(t) + 1
dv = −Γ(2n+ 2)

c2n+2
csc(t)

∞∑
k=1

(−1)k sin(kt)

k2n+2
.

Here we use the fact that for the Generalized Secant Hyperbolic distribution, the odd

moments are 0. The right side of the last line follows from Gradshteyn and Ryhzik

(1994, formula 4.272.3).

Case 2: Assume t > 0 and a = cosh(t) and define for 0 < µ < 2,

F (µ) =

∫ ∞

1

uµ−1

u2 + 2u cosh(t) + 1
du

.

(a) First, let µ < 1. Then define

F (µ) =

∫ ∞

1

uµ−1

u2 + 2u cosh(t) + 1
du

=
csch(t)

2

[∫ ∞

1

uµ−1

u+ exp(−t)
du−

∫ ∞

1

uµ−1

u+ exp(t)
du

]
=

csch(t)

2

[
1

1− µ
+

∞∑
k=1

1

k + 1− µ
(−1)k exp(−kt))− exp((µ− 1)t)π

sin(πµ)

+
∞∑

k=0

(−1)k exp(−(k + 1)t)

k + µ

]
.

These follow from Gradshteyn and Ryzhik(1994, 3.194.1, 3.194.2 and 3.194.3) and the

fact that Γ(µ)Γ(1− µ) = π
sin(πµ)

from Gradshteyn and Ryzhik (1994, 8.334.3).

Define

G(u) =
π

u

(
1− u exp(−(t/π)u)

sin(u)

)
,

for −π < u < 0 or 0 < u < π and G(0) = t. This function is analytic on (−π, π).



Using the product of two series (see, e.g., Gradshteyn and Ryzhik (1994, 0.316) yields:

G(u) =
π

u

(
1−

∞∑
j=0

(−1)j(t/π)juj

j!

∞∑
k=0

bku
k

)
=
π

u

(
1−

∞∑
k=0

Cku
k

)

where b0 = 1, b2j−1 = 0, b2j = 2(1− 21−2j)π−2jζ(2j), j ∈ N, with C0 = 1 and otherwise

Ck =
k∑

j=0

(−1)j(t/π)j

j!
bk−j.

Thus

G(u) = −π
∞∑

k=1

Cku
k−1.

Set

H(y) = G(πy) = −
∞∑

k=1

Ckπ
kyk−1

and then

H(m)(0) = −m!
m+1∑
k=0

(−1)k(t/π)k

k!
bm+1−kπ

m+1

from which we have for m = 2n+ 1:

H(2n+1)(0) = −(2n+ 1)!

(
t2n+2

(2n+ 2)!
−

n∑
k=0

t2k

(2k)!
b2n+2−2kπ

2n+2−2k

)
.

(b) If µ = 1:

F (1) =

∞∫
1

dv

(v + exp(t))(v + exp(−t))

= lim
n→∞

csch(t)

2

[
ln(v + exp(−t))− ln(v + exp(t))

]n
1

=
csch(t)

2
lim

n→∞

[
ln

(
n+ exp(−t)
n+ exp(t)

)
+ ln

(
1 + exp(−t)
1 + exp(t)

)]

=
t · csch(t)

2
= lim

µ→1−

∫ ∞

1

vµ−1

(v + exp(t))(v + exp(−t))
dv.



(c) If 2 > µ > 1 then note first that

vµ−1

(v + exp(t))(v + exp(−t))
=

csch(t)

2

[
exp(t)

vµ−2

v + exp(t)
− exp(−t) vµ−2

v + exp(−t)

]
.

Using Gradshteyn and Ryzhik (1994, 3.194.1, 3.194.2 and 3.194.3) with α = µ− 1 and

rearranging terms shows that again in this case,

F (µ) =
csch(t)

2

[
H(1− µ) +

∞∑
k=1

1

k + 1− µ
(−1)k exp(−kt)) +

∞∑
k=0

(−1)k exp(−(k + 1)t)

k + µ

]
.

Further, limµ→1+ F (µ) = tcsch(t)/2, so that F is continuous at 1.

Finally, F (µ) has derivatives (with respect to µ in an interval containing µ = 1) of

arbitrary order, and hence

F (2n+1)(1) =

∫ ∞

1

(lnu)2n+1

u2 + 2u cosh(t) + 1
du

=
csch(t)

2

[
−H(2n+1)(0) + (2n+ 1)!

∞∑
k=1

(−1)k exp(−kt)
k2n+2

+(2n+ 1)!
∞∑

k=0

(−1)k+1 exp(−(k + 1)t)

(k + 1)2n+2

]

= csch(t)(2n+ 1)!

[
t2n+2

2(2n+ 2)!
+

n∑
m=0

t2m

(2m)!
(1− 22m−2n−1)ζ(2n+ 2− 2m)

+
∞∑

j=1

(−1)jj−2n−2 exp(−jt)

]
.

which involves the well known Riemann zeta function and rapidly converging series.

�



6 A class of skewed GSH distributions

6.1 Density and (inverse) cumulative distribution function

There are plenty of methods in the literature to make a symmetric distribution skewed.

As the distribution function of the GSH distribution is explicitly known, we lay our focus

on splitting the scale parameter, as it was done by Fernandez, Osiewalski and Steel (1995)

for the skewed exponential power distribution.

Let γ > 1, I+(x) denote the indicator function for x on R+ and I−(x) denote the indicator

function for x on R−. Then it can be easily verified that

fSGSH(x; t, γ) =
2

γ + 1
γ

{
fGSH(x/γ) · I−(x) + fGSH(γx) · I+(x)

}
=

2c1
γ + 1

γ

·
(

exp(c2x/γ) · I−(x)

exp(2c2x/γ) + 2a exp(c2x/γ) + 1
+

exp(c2γx) · I+(x)

exp(2c2γx) + 2a exp(c2γx) + 1

)
is a density function which is symmetric for γ = 1, skewed to the right for γ > 1 and

skewed to the left for 0 < γ < 1. The corresponding distribution will be termed as

skewed generalized secant hyperbolic distribution in the sequel. The effect of the skewness

parameter on the density can be seen in figure 1, below.

It can also be shown (see, for example, Grottke (2002), p. 21) that the cumulative and

the inverse cumulative distribution functions admits a closed form, namely

FSGSH(x; t, γ) =
2γ2

γ2 + 1
·
(
FGSH (x/γ) · I−(x) +

(
γ2 − 1 + 2FGSH(γx)

2γ2

)
· I+(x)

)
,

F−1
SGSH(x; t, γ) = γF−1

GSH

(
x · γ

2 + 1

2γ2

)
IA(x) +

1

γ
F−1

GSH

(
x · γ

2 + 1

2
− γ2 − 1

2

)
IA(x).

with

IA(x) =


1, if x < γ2

1+γ
,

0, if x ≥ γ2

1+γ
.

and IA(x) = 1− IA(x).



6.2 Moments of the SGSH distribution

Using proposition 5.1, we can deduce the moments of a SGSH distribution, in particular

calculating the skewness and kurtosis coefficient, measured by the third and fourth stan-

dardized moments. The proceeding is as follows: Assume X follows a SGHS distribution

and let X1 denote the corresponding symmetric (i.e. with γ = 1) random variable with

density f1. Then

E(Xr) = E+(Xr
1) ·

2γ

γ2 + 1
·
[
(−1)rγr+1 + γ−r−1

]
, (6.6)

with positive half moments

E+(Xr
1) =

∫ ∞

0

xrf1(x)dx.

Note, that for odd r we can approximate the positive half moments by applying proposition

5.1. For simplicity, let. For even r, the positive half moments can be obtained from E(Xr
1)

by division with 2. In the case of a standard GSH variable X1, i.e. with E(X1) = 0 and

E(X2
1 ) = V(X1) = 1, Vaughan (2002) showed that

K(X1) = E(X4
1 ) =


21π2−9t2

5π2−5t2
, for t ∈ (−π, 0]

21π2+9t2

5π2+5t2
, for t > 0.

With this results in mind, it is straightforward to deduce the power moments and the

central moments of a standard SGSH variable X. The results are summarized in the

lemma 6.1 and lemma 6.2, below.

Lemma 6.1 (Power moments) Assume X follows a standard SGSH variable with pa-

rameter t > −π/2 and γ > 0. Then the second and fourth power moments m′
i =

E(X i), i = 2, 4 are given by

m′
2 =

γ6 + 1

γ2(γ2 + 1)



m′
4 =


21π2−9t2

5π2−5t2
· γ10+1

(γ2+1)γ4 , for t ∈ (−π, 0],

21π2+9t2

5π2+5t2
· γ10+1

(γ2+1)γ4 , for t > 0.

Lemma 6.2 (Central moments) Assume X follows a standard SGSH variable with

t > −π/2 and λ > 0. Then

m2 = E(X −m′
1)

2 = V(X) =
γ6 + 1

γ2(γ2 + 1)
− (m′

1)
2,

m3 = E(X −m′
1)

3 = m′
3 − 3

γ6 + 1

γ2(γ2 + 1)
m′

1 + 2(m′
1)

3,

m4 = E(X −m′
1)

4 = m′
4 − 4m′

3(m
′
1) + 6

γ6 + 1

γ2(γ2 + 1)
(m′

1)
2 − 3(m′

1)
4.

Finally, using lemma 6.2, the skewness coefficient S(X) and the kurtosis coefficient K(X)

can easily be deduced. The results are summarized in table 1 and 2, below.

Table 1: Influence of t and λ on S(X).

λ ↓, t→ 0.50 0.90 0.95 1.00 1.05 1.10 1.50 2.00

-3.0 4.8520 1.4510 0.7210 0.0000 -0.6870 -1.3190 -4.1360 -4.8520

-2.0 1.7550 0.4140 0.2040 0.0000 -0.1940 -0.3750 -1.3330 -1.7550

-1.0 1.3530 0.3020 0.1480 0.0000 -0.1410 -0.2740 -0.9980 -1.3530

-0.5 1.2820 0.2830 0.1390 0.0000 -0.1320 -0.2570 -0.9400 -1.2820

0.0 1.2570 0.2780 0.1370 0.0000 -0.1300 -0.2520 -0.9230 -1.2570

0.5 1.2390 0.2720 0.1340 0.0000 -0.1270 -0.2470 -0.9060 -1.2390

1.0 1.1810 0.2570 0.1260 0.0000 -0.1200 -0.2330 -0.8590 -1.1810

2.0 0.9960 0.2100 0.1030 0.0000 -0.0980 -0.1910 -0.7130 -0.9960

20.0 0.0490 0.0090 0.0040 0.0000 -0.0040 -0.0080 -0.0320 -0.0490



Table 2: Influence of t and λ on K(X).

λ ↓, t→ 0.50 0.90 0.95 1.00 1.05 1.10 1.50 2.00

-3.0 42.4610 30.2350 29.3340 29.0390 29.3060 30.0270 38.9620 42.4610

-2.0 8.3710 5.9670 5.8670 5.8360 5.8640 5.9430 7.2440 8.3710

-1.0 6.1240 4.5470 4.4890 4.4710 4.4870 4.5330 5.3340 6.1240

-0.5 5.7780 4.3310 4.2790 4.2620 4.2770 4.3190 5.0450 5.7780

0.0 5.6580 4.2660 4.2160 4.2000 4.2140 4.2540 4.9520 5.6580

0.5 5.5750 4.2050 4.1560 4.1410 4.1550 4.1930 4.8760 5.5750

1.0 5.3050 4.0370 3.9930 3.9790 3.9920 4.0270 4.6520 5.3050

2.0 4.5180 3.5500 3.5180 3.5080 3.5170 3.5420 4.0040 4.5180

20.0 1.8800 1.8580 1.8580 1.8580 1.8580 1.8580 1.8670 1.8800

It can be seen that both skewness and kurtosis are affected by t and γ and that there

is no separation between skewness and kurtosis by t and γ. However, introducing the

parameter γ leads to a very flexible distribution family. This will be demonstrated in the

context of financial return data in the next section.

7 Application with respect to financial return data

In order to adopt and compare estimation results for a great deal of distributions – in

particular the stable distributions – priority is given to the weekly returns of the Nikkei

from July 31, 1983 to April 9, 1995, withN = 608 observations. This series was intensively

investigated, for example, by Mittnik, Paolella and Rachev (1998) because it exhibits

typical stylized facts of financial return data. Figure 1 illustrates the time series of levels



and corresponding log-returns.

Figure 1: Levels and returns of Nikkei.

(a) Levels (b) Returns

Similar to Mittnik, Paolella and Rachev (1998), four criteria are employed to compare

the goodness-of-fit of the different candidate distributions. The first is the log-Likelihood

value (LL) obtained from the Maximum-Likelihood estimation. The LL-value can be

considered as an ”overall measure of goodness-of-fit and allows us to judge which candidate

is more likely to have generated the data”. As distributions with different numbers of

parameters k are used, this is taken into account by calculating the Akaike criterion given

by

AIC = −2 · LL+
2N(k + 1)

N − k − 2
.

The third criterion is the Kolmogorov-Smirnov distance as a measure of the distance

between the estimated parametric cumulative distribution function, F̂ , and the empirical

sample distribution, Femp. It is usually defined by

K = 100 · sup
x∈R

|Femp(x)− F̂ (x)|. (7.7)

Finally, Anderson-Darling statistic is calculated, which weights |Femp(x) − F̂ (x)| by the



reciprocal of the standard deviation of Femp, namely

√
F̂ (x)(1− F̂ (x)), that is

AD0 = sup
x∈R

|Femp(x)− F̂ (x)|√
F̂ (x)(1− F̂ (x))

. (7.8)

Instead of just the maximum discrepancy, the second and third largest value, which is

commonly termed as AD1 and AD2, are also taken into consideration. Whereas K em-

phasizes deviations around the median of the fitted distribution, AD0,AD1 and AD2

allow discrepancies in the tails of the distribution to be appropriately weighted.

Estimation was performed not only for the two families of generalized hyperbolic secant

distributions, but also for distribution families which have became popular in finance in

the last years: Firstly, the generalized hyperbolic (GH) distributions which were discussed

by Prause (1999) and include, for example, the Normal-inverse Gaussian (NIG) distribu-

tions (see Barndorff-Nielsen (1997)) as well as the hyperbolic (HYP) distributions (see

Eberlein and Keller (1995)) as special cases. Secondly, the exponential generalized beta

of the second kind (EGB2) distribution that was introduced by McDonald (1991) as a

generalization of the logistic (LOG) distribution and used in various financial applica-

tions, see also Fischer (2002). Thirdly, a very flexible generalization of the generalized

t-distribution (SGT2) proposed by Grottke (2001). Finally, we performed calculations for

the gh-transformed normal (gh-NORM) distribution (see Klein and Fischer (2002)). The

estimation results are summarized in table 3, below. They have been obtained using a

Matlab routine which was written by the authors.



Table 3: Goodness-of-fit: Nikkei225.

Distr. k LL AIC K AD0 AD1 AD2

NORM 2 -1428.3 2862.6 6.89 4.920 2.810 1.070

STABLE 4 -1393.2 2796.5 3.00 0.085 0.084 0.081

HS 2 -1393.4 2792.8 4.31 0.216 0.150 0.121

GHS 3 -1392.2 2794.6 4.15 0.140 0.117 0.114

SGHS 4 -1388.1 2786.3 2.42 0.091 0.090 0.083

GSH 3 -1392.3 2794.8 4.17 0.142 0.117 0.114

SGSH 4 -1387.5 2785.2 2.18 0.088 0.087 0.080

LOG 2 -1398.1 2802.1 4.56 0.362 0.236 0.186

EGB2 4 -1388.1 2786.3 2.45 0.103 0.100 0.095

GH 5 -1388.0 2788.2 2.43 0.095 0.093 0.086

HYP 4 -1388.2 2786.5 2.50 0.106 0.103 0.098

NIG 4 -1388.2 2786.6 2.48 0.085 0.085 0.075

SGT2 5 -1387.4 2786.9 2.12 0.076 0.072 0.071

Student-t 3 -1392.2 2792.5 3.77 0.107 0.104 0.103

gh-NORM 4 -1388.7 2788.5 2.27 0.068 0.062 0.061

Firstly, let us focus on the fit of generalized hyperbolic secant families. There seems to be

no difference between the GSH distribution of Vaughan (2002) and the GHS distribution

of Harkness and Harkness (1968). This is not true if we consider the skewed pendants

and compare the NEF-GHS distribution of Morris (1982) with the SGSH distribution

(which was introduced in the last section) which exhibits better values with respect to



all five criteria. For that reason, we restrict our considerations to SGHS distribution.

Concerning the LL-value, only the SGT2 distribution has a higher value. The same is

true if we compare the K-values. If we take the number of parameters into account (i.e.

focus on the AIC criterion), SGSH even outperforms SGT2. The situation is a little bit

different for the fit in the tails. Here, gh-transformed distributions finished best, followed

by SGT2, NIG, STABLE and SGHS (Note, that the last three are close together).
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